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Addenda and Errata to WIS-TCI~-28 - "Upper and Lower Bounds for Ground

State Second Order

Perturbation Energy"

by Stephen Prager and ‘
Joseph 0. Hirschfelder

Abstract Five lines from bottom should reads

" ... wave function, the Hylleraas principle is presented ... ' ,

p.- 3 Third line from the top: change "is" to "are"™ .

Fourth line from the top: should read ™ --- arbitrary

additive constant.™

Three lines above Eq. (6): change ™Sections™ to "sections™ .

p. 6 One line below Eq. (17): delete ™only slightly™ .
Below Eq.(18) insert: "Here S.E, may be arbitrarily large.™

p. 8 Replace last two lines with: ™the true function F . The
right hand side of (27) is independent of a . For any
other property depending on the magnitude of F , the most

probable value of the constant a is™ .

p. 12,13 Replacement is on opposite side of this page.

P 14 Ref. 8. Add at end in place of J. 0. Hirschfelder reference:
"A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. A233, 70 (1956);
A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. A238, 269 (1956)."

p. 15 Ref. 13. Last equation should read:
-1 -1
" ... = cao T
frlz K(rz) ] .
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ABSTRACT j5 08

The first-order perturbation equation, using the Dalgarno-Lewis
formulation, is.arranged inaform analagous to the Poisson equation
for the electrostatic potential produced by a charge distribution in
a medium of variable dielectric constant. Thus, the Thomson and
Dirichlet variational principles of electrostatics can be used to
obtain approximate solutions to the first-order perturbation equation
for systems in either the ground state or the lowest energy state of a
given symmetry. The Thomson principle provides a useful lower bound
to the second-order perturbation energy. The Dirichlet principle is
derivable from the Rayleigh-Ritz or Hylleraas principles and gives an
upper bound to the second-order energy. For excited states, the
Sinanoglu principle provides the upper bound. By optimizing the scaling
of the trial perturbed wave function, both the Hylleraas and the
Sinanoglu principles are presented in a somewhat improved form. As an
example, the polarizability of atomic.hydrdgen is used to illustrate
both the Thomson and Dirichlet principles and to place upper and lower
bounds on the polarizability.

This research was supported by the following grant: National
Aeronautics and Space Admlnlstratlon Grant NsG-275 62{4180)
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I. Introduction

The first order perturbation equation in molecular quantum mechan-
ics can be expressed in a form which is similar to the equation for the

electrostatic potential of a charge distribution in a medium of variable

dielectric constant. The second-order perturbation energy is proportional

to the electrostatic energy of this charge distribution. By this anal-
ogy, the well-known Dirichlet and Thomson variational principles of
electrostaticsl’2 can be used to provide upper and lower bounds for the
second-order perturbation energy of a molecule in its ground state.

The Dirichlet principle for the upper bound is derivable from the
quantum mechanical Rayleigh-Ritz principle and is somewhat better than
the Hylleraas princip1e3’4 which is frequently used for perturbation
problems. The Thomson principle for the lower bound is far better than
the Weinstein-MacDonald princip1e4’5’6 which previously provided our
best lower bound estimate (without explicit consideration of the energy
of the first excited state). The calculation of the polarizability of
atomic hydrogen ié used as a simple example to show the efficacy of the
Thomson and the Dirichlet principles. Following Siﬁanoglu7, the
Dirichlet principle can be extended to give upper bounds for the energy
of molecules in excited states by making use of the unperturbed wave

functions for each of the lower energy states. The Thomson principle

This research was supported by the following grant: National
2Aeronautics and Space Administration Grant NsG-275-62(4180).



might be extended to give lower bounds to the energy for excited states.
However, when the perturbation equation is separable, the solutions

may be obtained by quadrature and there is little need for a variational
principle.

The Dalgarno-Lewis procédure8’9 for determining explicit solutions
to the perturbation equations has made it feasible tc apply perturba-
tion theory to a wide class of molecular prcblems where complete sets
of solutions are not known for the unperturbed systemlou Perturbation
treatments have the advantage over variational methods that they permit
the system itself to select the proper type of terms which should be
included in the trial wave function. From a knowledge of the trial
wave function through the first order, the energy can be calculated
accurately through the third order. For many chemical purposes this
is sufficient accuracy.

8,9

Dalgarno and Lewis express the first-order perturbed wave

function as a product of a function F and Wo . Here Wo is the
zeroeth order (or unperturbed) wave function11 for the state under
consideration (which is designated by the subscript Wo"). For convenience
we take vo to be real. If V is the perturbation potential, the

first-order perturbation equation can be expressed in the form
v-vivey = 2 - ey )
o o (¢ o
Here e(()l) is the first order perturbation energy,

€X - [v,vv @)

The second and third-order energies, 652) and EgB) . are

€? - [y - rar ©)

62,3) = ﬁ ‘VO(V- G(()l))\[fo F dr (%)

’The product F WO must satisfy the same boundary conditions and the




same conditions of continuity, square integrability, and continuity of
the first derivatives (except at interior points where the potential
energj is singular) as is normally expected of stationary state wave
functions. Equation (1) defines F except for an arbitrary constant.
Usually this constant is adjusted so as to make WO F Wo d£ =0 .

If ws is the unperturbed wave function for the state "s"™ and the

unperturbed energies are és and 60 for the two states,

f‘ys F WO d£ = (EO- eS)-l;./'q,s v WO d£ (5)

If Eq. (1) is separable, F can be determined by quadrature if the
state under consideration is either the ground state or the lowest
energy state of a given symmetry. For other states, difficulties are
encountered since F may have poles at points where Wo has nodes.
For excited states, there are special procedures for determining F
provided that Eq. (1) is separablelz. Except in Section VI, we shall
confine our attention to the ground state or the lowest energy state
of a given symmetry. The higher order perturbation equations can be
written in the same general form as Eq. (1). Therefore,without
difficulty, the results of the following Sections can be generalized
to the higher orders of perturbation.

The first order perturbation relatidn, Eq. (1), may be regarded

as a Poisson equation
v (KV¢) = -lnre (6)

for the electrostatic potential ¢ = F produced by the charge distribu-
tion ? = -(21)-1 WO(V- égl))vo in a medium of variable dielectric
constant K = wo . Furthermore, the electrostatic self-energy of the
charge distribution is U = %f€¢ d; = -(Zm)_légz) . Thus, the
Thomson and Dirichlet principles of electrostatics can be applied to
obtain lower and upper bounds for E(()z) provided that singularities
in F arising from nodes in Wo are avoided by restricting the
discussion to the ground state or to the lowest energy state of a given

symmetry.



II. Thomson and Dirichlet Principles in Electrostaticsl’z

In a medium of variable dielectric constant K , the self-energy
U of a charge distribution P may be written in a number of different

ways:

U = 35_/9¢ dg = (8n)-1fKV¢-V¢dE = (8n)-1fK§'£d£ (7)

Here the electric field E is minus the gradient of the electrostatic

potential,

E = -V | ®)

If in place of the true potential ¢ (which satisfies Eq. (6)) and the
true electric field E (which satisfies Eq. (8)) we use the trial
potential 6 and the trial field E , the three integrals in Eq. (7)
are no longer equal nor equal to U . However, we have the following
inequalities:

Thomson's Principle states that the self-energy given in terms

of the trial electric field constitutes an upper bound on U ,
-1 - -
U < (8n) jl( EE d; $°))

subject to the condition that the trial electric field satisfies the

Poisson equation in the form
V-KE = bx P (10)
The equality in (9) only applies if E also satisfies Eq. (8) in which

case the trial field is equal to the true field.

Dirichlet's Principle provides a lower bound to the self-energy.

It states that

v > Zﬂ[feT) d;]z/fxvqj-vq;d}: (11)




for any trial potential 6 that goes to zero at infinity. The equality
in (11) is only obtained when 5 satisfies Eq. (6) and is therefore
equal to the true potential.

Equations of the Poisson type occur in connection with a wide
variety of physical phenomena. Thus, the Thomson and Dirichlet
principles have been used to determine the magnetic permeability in
multiphase systemslh,’the effective diffusion constant in poly-electrolyte
solutionsls, the Fermi-Thomas energy of atomic systemslG, and the
evaluation of quantum mechanical exchange and coulombic integralsz. In
addition, the Dirichlet principle has been used to determine the
Brownian movement in many-particle systems17 and the diffusion and
viscous flow in concentrated suspensionsls. With such a history of
successful applications, it is not surprising that the Thomson and
Dirichlet principlés can be usefully applied to perturbation problems.

(2)

ITI. Lower Bound for €o » Thomson's Principle

Thomson's principle can be applied to perturbation theory provided
that neither WO(VF 652))V° nor F ‘have singularities. The first
condition is satisfied if the Rayleigh~Schrodinger perturbation theory
is applicable (without special considerations). The second condition
is satisfied if the state "o" under consideration is the lowest ehergy
state_of.a given symmetry. Under these conditions, by analogy with
Eqs. (9) and (10),

@5 4 [4268 ~
€, z%fwo GG dr (12)

subject to the condition that the trial "field"™ é_ satisfies the

Poisson equation in the form
w28y o e
v (‘lfo E) = Z\I'O(V 60 )\VO (13)
The equality in (12) applies if, and only if, é = -V F .

PROOF =

First, let us prove that the equality in (12) applies for the



true "field" G =-VF . Multiplying Eq. (1) by F and integrating

over all space,

%fF v- (Woz V F)dr = fwo(v-egl)),yo Fdr = 6§2) (14)

The conditions for the applicability of Thomson's principle, stated
above, insure that Gauss' theorem can be applied to the left-hand-side
of Eq. (14)

%fF v-(q;o2 v F)dr = %fwoz FV F.d§ - gf‘yoz VE.VFdr (15)

all space boundary surface all space

at infinity

The surface integral in Eq. (15) vanishes because of the boundary condi-
tions imposed upon the stationary state wave function wo and its
perturbation F wo (they go to zero faster than any negative power of
the distance as the distance approaches infinity). Combining Eqs. (14)
and (15) and using the definition of G ,

@ _ f 2
€7 = % /v, GGdr (16)
Furthermore, Eq. (1) can be written in terms of G ,

v (v 2

9 = -2 - €, an

Now let us consider a trial field Q which differs only slightly
from the true field,

¢ = G+iég (18)

en

Substituting Eq. (18) into Eq. (16),

2 .
e - -%fwozm

- 4y}

dz 'f\voz & 3G dr - %fﬂfozSG; 3¢ dr

@
o

(19)

il
wwm;

dz-fwozg; 5§d£+%fw0259' 5g dg




Substituting Eq. (18) into Eq. (17) and imposing the condition (17),

v 289 = 0 (20)
Multiply Eq. (20) by F and integrate over all space, to give
2
fr v- (¥, 56)dr = 0 (21)

If 5}2 has no singularities, Gauss'theorem may be applied to Eq. (21)
to give

fwoz 3G'VFdr = 0 (22)

Making use of Eq. (22) and the definition §_= -V F,

fvoz G 5G dr = fvoz[g.+v Fl-5cdr = 0 (23)

Thus, Eq. (19) becomes

€ -5 fvlegaes v 5050 a (24)

Since the second integral is necessarily positive, the Thomson

principle, Eq. (12) is necessarily true.

Comparison of Thomson and Weinstein-MacDonald Principles

The best previous principle for obtaining lower bounds for the
energy of the ground state (without requiring knowledge of the energies

4’5’6. If H

is the Hamiltonian for the system, Eo is the energy of the ground

of excited states) is that of Weinstein and MacDonald

state, Vv is a normalized trial wave function, J1 = 4@ H V¥ 45 s

and J2 = | ¥ H2 ¥ dr , then the Weinstein-MacDonald principle states
Vad

that

2.%
E 2 3 - (Jz-Jl ) (25)



Let us apply this principle to a perturbation problem where H =h_ + AV ,

: , (M, 22¢@ .00,
the enmergy of the ground state is E_ = 60 + REO + A 60 +
and its true wave function is Wo + AF Wo + -2+ , If we suppose that
the un~normalized trial wave function is wo + AF Wo , then the

Weinstein-MacDonald principle states that

- 2 A%
Eo 2 E0 + 7‘€<(>1) } ;\[fz(ho- eo)F Wo + (V- egl))wog di:[

+ a‘3/2 (...) 4 oee

(26)

Since the integrand in Eq. (26) is only zero if F is equal to the true
function F , the coefficient of the first power of the perturbation
parameter on the right-hand-side is not Aegl) . Thus, the Weinstein-
MacDonald principle does not even accurately predict the first order
energy and gives us no information regarding the second-order perturba-
tion energy in this application. Thus, the Thomson principle is
unchallenged as our best means for determining the lower bound to the

second order perturbation energy.

IV. Upper Bound for ec(’z) 5 Dirichlet's Principle (Derived from

Rayleigh-Ritz Principle)

Dirichlet's principle can be applied to perturbation theory with
the same provisos as given for the Thomson principle in Section III.

By analogy with Eq. (11),

) .
(2) l (1) = l 20597
6‘0 < -2 f\yo(V- eo )‘Vo F dr /f“’o V F-VFdr (27)

where F 1is any trial function subject to the conditions that it not

2 FVF approaches zero faster than

have any singularities and that Wo
the square of the distance in the limit as the distance approaches

infinity. The equality holds if, and only if, F is proportional to
the true function F . Furthermore, if :~a F is a trial function, the

optimum value of the constant a 1is

8



a = -2 fwo(v- egl))wo Far /f\poz vivFd  (28)

Dirichlet's principle is only applicable to molecules in their grouhd
state or the lowest energy state of a given symmetry. Sinancglu's
principle, discussed in Section VI, provides an upper bound for the
second order perturbation energy of excited state molecules.
PROOF:

Although the Dirichlet principle can be justified directly by
using the standard methods of ‘variational calculus, we shall derive it
in two steps starting with the Rayleigh-Ritz minimum energy principle.
Using the notation of the previous section, the Rayleigh-Ritz principle

states that EO‘S J In a perturbation problem with H = h0 + AV,

1 -
if we evaluate J1 using the un-normalized trial wave function

Wo + AF v, > then the Rayleigh-Ritz principle gives

, 1 2 3 ...,
E S €+ A6, + A Q+ AT (o) + (29)
where
Q=f1'w(h-e)w i‘dr+2f¢(v~e‘(1))w F dr (30)
o] [o] (o) [¢] o~ o] o] (o] -~
Since E_= € + ?\Eél) + )\.2 Eéz) + .-+ , we can subtract €o + 2621)

from both sides of (29) and divide by Az to obtain
€M+ 28+ caracy w e (31)

Since Eq. (30) is true for all sufficiently small values of A, it
follows that

€ <q (32)

This is the Hylleraas princip1e4’5’6o The equality holds if, and only

if, the trial function F 1is equal to the true function F . The

Hylleraas principle has been used extensively in perturbation theory



to provide a perturbation-variational upper bound on the second order
perturbation energy. The Dirichlet principle, Eq. (27), is readily
derived from the Hylleraas principle. However, the Dirichlet principle
usually gives a closer limit.

The first step in deriving the Dirichlet principle is to examine
the first integral in Q . Since ho = -3V + v, where A is the

potential energy of the unperturbed system,

I
[

ho(\yo F) F h0 wo -V WO-V_F %qb VF (33)

And, of course, ho ¥ = Eo wo . Thus,

]

- - - - - 2 -
fF v (h - €y Fdr -fF v, V¥ VFdr- %fF v, VFdr

= -} ff' v (\yoz v F)dr (34)

= +35f\y02vi-vi'd£

The last step in Eq. (34) is obtained through integration by parts and
is only permissible if F has no singularities, and Woz FVF
approaches zero faster than the square of the distance in the limit

as the distance approaches infinity. Thus, the Hylleraas principle

can be restated in the form
(2) f 2 =0 5 f _ Dy, =
eo <3 ¥y VFVF d'f + 2 WO(V €, )wo F dr (35)

Now, in place of F , let us use as trial function a F . Then (35)

becomes

2
€‘(32) < ;_fWOZ v FvF d}: + Zaf\yo(v- e(()l))\yo F dr (36)

10

By varying the constant "a", the right-hand-side of (36) can be minimized

and the upper bound for Géz) improved. The optimum value of "a" is
given by Eq. (28). Inserting Eq. (28) into (36) gives theDirichlket

principle as expressed in (27).
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V. Illustration: Polarizability of 1s Atomic Hydrogen

The polarizability of a hydrogen atom in its ground state provides
a good example to illustrate the application of the Thomson and
Dirichlet principles. Consider the atom perturbed by a uniform electric
field in the x direction. The electric field strength is taken to
be the perturbation parameter and V = -x . The first-order perturba-
tion energy (or Stark effect) is zero for this case. The polarizability
is defined to be of = -2€c()2) . The 1s wave function for the
unperturbed hydrogen atom is *o = (n)-% exp(-xr) .

Thomson's Principle

Condition (13) becomes for this example,
v. [g exp(-2r)] = 2 x exp(-2r) (37)
A possible trial field which satisfies Eq. (37) is
é_= -G+nj, (38)

Here .jx is the unit vector in the =x direction. That the trial
-

é_ of Eq. (38) is not the correct field is evident from the fact that

the curl of Eq. (38) does not vanish. Thus, éy is not equal to -V F .
Substituting (38) into (12) gives

ef)z) > -2.375 or X < 4.75 (39)

Dirichlet's Principle

F = ax provides a reasonable trial function for use in Dirichlet's

principle, (27). The upper bound for 6§2) is then

| 2
6(()2) < -2 [%fxz exp(-2r)d'£] I (40)

Or, o >4.
According to Eq. (28),
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a = Z(n)-lfxz exp(-2r)dr = 2 41)

Thus, 4.00 < & < 4.75 . The correct value of & is 4.50 .
By using more complicated functions for G and F , the limits on &X

can be made as close as desired.

VI. Upper Bound for Excited State ‘iigz) 4 Sinanoglu's Principle

For excited molecular states, the upper bound for E:gz) may be

obtained from a modification of Sinanoglu's principle =

: 2 )
€P<- Uvo(v- eM)f v, ar | /fF v (h - €)F v, dr
@)

subject to the condition that
= -1
_/lws Fy dr = (€-€) f\lfs Vi, dr (43)

for all states "s™ which are lower in energy than the "o state under
consideration, Eo > €s . The trial function F is further restricted
by the requirement that F wo satisfy the same boundary, continuity,

and integrability conditions required of wo . The equality in (42) holds
if, and only if, F 1is proportional to the true F . Furthermore, if

a F is a trial function, the optimum constant a is

a = -fwo(V-ef,D)i‘ v, d;;/fi‘ v (h - €JF ¥y dr  (44)

PROOF :

The proof of the modified Sinanoglu principle is very similar to
the proof of the Dirichlet principle given in Section IV. We use for
the un-normalized trial wave function Wo + AF wo . Because of the
conditions given by Eq. (43), this trial wave function is orthogonal
to all of the lower energy states of the system. Because of this

orthogonality4 EO <J Thus, with the conditions of Eq. (43), the

1 -
Hylleraas principle, Eq. (32),st111 applies. The principle which
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Sinanoglu derived7 is a combination of Eq. (32) with the conditions of
Eq. (43).
For excited states, the Hylleraas principle cannot be rearranged
into the form of Eq. (35) since F may have poles at places where
Wo has nodes and therefore Gauss' theorem may not be used in Eq. (34).

By using as trial function a F , the Hylleraas principle (32) becomes
(2) 2/’- 3 f PR CN®

Eo <a F v{r':,(ho eo)F vo dz + 2a wo(V 50 )YF Wo d£ (45)

By varying the constant ™a", the right-hand-side of (45) can be

e
o

of Mam is given by Eq. (44). Inserting Eq. (44) into (45) gives the

minimized and the upper bound for improved. .The optimum value

modified Sinanoglu principle as expressed in (42).
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